Tuning thermal transport in Si nanowires by isotope engineering.
نویسندگان
چکیده
We study thermal transport in isotopically disordered Si nanowires, discussing the feasibility of phonon engineering for thermoelectric applications within these systems. To this purpose, we carry out atomistic molecular dynamics and nonequilibrium Green's function calculations to characterize the dependence of the thermal conductance as a function of the isotope concentration, isotope radial distribution and temperature. We show that a reduction of the conductivity of up to 20% can be achieved with suitable isotope blends at room temperature and approximately 50% at low temperature. Interestingly, precise control of the isotope composition or radial distribution is not needed. An isotope disordered nanowire roughly behaves like a low-pass filter, as isotope impurities are transparent for long wave-length acoustic phonons, while only mid- and high-frequency optical phonons undergo significant scattering.
منابع مشابه
Preparation and Characterization of Tin Oxide Nanowires
The aim of this research is preparation of SnO2 nanowires by means of Thermal chemical reaction vapor transport deposition (TCRVTD) method from SnO powders. The morphology, chemical composition and microstructure properties of the nanowires are characterized using field emission scanning electron microscope (FE-SEM), EDS, and XRD. The XRD diffraction patterns reveal that the SnO2 nanowires have...
متن کاملUltralow thermal conductivity of isotope-doped silicon nanowires.
The thermal conductivity of silicon nanowires (SiNWs) is investigated by molecular dynamics (MD) simulation. It is found that the thermal conductivity of SiNWs can be reduced exponentially by isotopic defects at room temperature. The thermal conductivity reaches the minimum, which is about 27% of that of pure 28Si NW, when doped with 50% isotope atoms. The thermal conductivity of isotopic-super...
متن کاملTransport modulation in Ge/Si core/shell nanowires through controlled synthesis of doped Si shells.
Appropriately controlling the properties of the Si shell in Ge/Si core/shell nanowires permits not only passivation of the Ge surface states, but also introduces new interface phenomena, thereby enabling novel nanoelectronics concepts. Here, we report a rational synthesis of Ge/Si core/shell nanowires with doped Si shells. We demonstrate that the morphology and thickness of Si shells can be con...
متن کاملGate-All-Around Silicon Nanowire MOSFETs: Top-down Fabrication and Transport Enhancement Techniques
Scaling MOSFETs beyond 15 nm gate lengths is extremely challenging using a planar device architecture due to the stringent criteria required for the transistor switching. The top-down fabricated, gate-all-around architecture with a Si nanowire channel is a promising candidate for future technology generations. The gate-all-around geometry enhances the electrostatic control and hence gate length...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 37 شماره
صفحات -
تاریخ انتشار 2016